Project Title: Improved Visualization for Formal Languages

Group Members: Chris Pinto-Font (cpintofont2021@my.fit.edu), Vincent Borrelli
(vborrelli2022@my.fit.edu), Andrew Bastien (abastien2021@my.fit.edu), Keegan
McNear (kmcnear2022@my.fit.edu)

Faculty Advisor: Dr. Luginbuhl (dluginbuhl@fit.edu)

Client: Dr. Luginbuhl
Meeting time(s): Bi-weekly Tus

Goal & Motivation: The goal is to design and program a user-friendly application for
visualizing Deterministic Finite Automata (DFA). The primary motivation is to create an
effective teaching and learning aid that allows users to accurately plot DFAs and
animate their execution. This project aims to replace an outdated application with a
more intuitive interface and features requested by the client, such as step-by-step
tracing.

Approach: Key Features:

Intuitive Creation: A GUI editor allowing users to plot DFAs, designate specific states
(initial, final, dead), and track transitions based on grammatically valid strings.
Animation: A visual playback system that shows step-by-step formation and execution
of DFAs, which aids the understanding of logic flow.

Minimization (Complete): The system allows for the minimization of DFAs that have
additional and unnecessary states and transitions.

Improved GUI: A GUI that is seamless and easy to use, such as a toolbox interface that
would allow for hover over for tooltips. As well as shortcuts integrated into the system.

Novel Features/Functionalities:

Multiple symbols on transition: To be able to place multiple symbols on a single
transition and remain readable.

Integrated Documentation: In program documentation toolboxes that allow users to
learn about the software without needing to locate and open external “read me” files.
Interactive Canvas: A drag-and-drop canvas system that integrates with the text-based
backend.

Algorithms & Tools:

mailto:cpintofont2021@my.fit.edu
mailto:vborrelli2022@my.fit.edu
mailto:abastien2021@my.fit.edu
mailto:kmcnear2022@my.fit.edu
mailto:dlugunbuhl@fit.edu

Language: Python is the primary language used for the software logic.

GUI Framework: Using wxGlade and Python for the graphical user interface.
Minimization Algorithm: The distinguishability algorithm is used. This would take
unordered pairs of states, which would mark these pairs where one is accepting and the
other is not, while iteratively making pairs based on transition outputs until no new
marks can be made. The unmarked pairs are combined in the end.

Notes: (1/20/26)

Nice to have: Turn NFA to DFA (can't minimize an NFA, then provide info and optional
ways to convert NFA to DFA) or just hardlock DFA only

Hardcoded demo (pre-record a demo)

Include Lambda only for NFAs (low priority)

Undoable minimization

Depth first to traverse nondeterminism during animation, backtracking would work for
animation (or go through all paths for animation, each has its own color)

Technical Challenges:

1. Design: system architecture diagram
o Animation Implementation: The team has to work on improving animation.
o Minimization Logic: Implementing the minimization logic was a little on the
rougher side. We were able to grasp the concept well enough to
implement it, but we could make it more efficient and guarantee its
correctness.
2. Evaluation: how to measure success? Some ideas:
o Speed: The software achieves fast enough speeds that occur almost
instantly.
Accuracy: All DFAs have been correct so far, including minimization.
Reliability: The software does achieve the goal.

3. Progress Summary:

Module/feature Completion % To do

Interactive canvas for 100% Improve interactivity
graphing

Basic animation in graphing

space

50%

Improve animation

Tie text based to visual 80% Full implementation
version

DFA minimization 80% Can be refined
Update “Read Me” file 50% Needs to be updated

4. Milestone 4 (Feb 23): itemized tasks:
o Implement better animation for visual flow
o Check minimization and see if it can be improved
o GUI improvements to make the program more visually appealing

o Implement lambda if including NFAs

5. Milestone 5 (Mar 30): itemized tasks:
o Complete tutorial mode
o Animation refined

o Conduct evaluation and analyze results

o Create a poster for Senior Design Showcase
6. Milestone 6 (Apr 20): itemized tasks:
o Final polish

o Test/demo of the entire system
o Conduct evaluation and analyze results
o Create user/developer manual
o Create a demo video
Task Chris Vincent Andrew Keegan
Implement Bug Bug Co-Lead coder | Co-Lead coder
simple Fixer/Code Fixer/Code and and

animations Contributor Contributor development development
and designer and designer head head
Implement Minimization Bug Co-Lead coder | Co-Lead coder
minimization logic Fixer/Code and and
implementation Contributor development development
and researcher | and researcher head head
Make the GUI Bug Bug Co-Lead coder | Co-Lead coder
more involved Fixer/Code Fixer/Code and and
and “cooler” Contributor Contributor development development
and researcher | and researcher head head
Include more Logic writer, Logic writer, Co-Lead code | Co-Lead code
transition types DFA logic DFA logic side side
(different consultant, and | consultant, and | implementor implementor
alphabets, bug tester bug tester
including
lambda)
Refine stability Bug Bug Co-Lead code | Co-Lead code
with new Fixer/Code Fixer/Code side side
features and Contributor Contributor implementor implementor
logic and designer and designer

1. Description (at least a few sentences) of each planned task for Milestone 4:

o Task 1: Implement animation: We already have simple enough animation
to visually show the flow of the DFA creation and transition, however it
needs to be worked on to make it more impressive.

o Task 2: Implement minimization: The implementation of minimization is
roughly implemented but it needs to be further refined. As well as
implementing the tutorial mode.

o Task 3: Improve the GUI: We need to make the GUI more visually
appealing while keeping the simplicity of use for the user interface.

o Task 4: Include lambda: We need to add lambda transitions to the NFA
logic if we implement NFAs.

o Task 5: Refined stability: We need to make sure the program does not
break when new features are added, and keep it stable for robustness.

2. Approval from Faculty Advisor
o "l have discussed with the team and approve this project plan. | will
evaluate the progress a igh a grade for each of the three

oo 2024

