
Project Title: Improved Visualization for Formal Languages

Group Members: Chris Pinto-Font (cpintofont2021@my.fit.edu), Vincent Borrelli
(vborrelli2022@my.fit.edu), Andrew Bastien (abastien2021@my.fit.edu), Keegan
McNear (kmcnear2022@my.fit.edu)

Faculty Advisor: Dr. Luginbuhl (dluginbuhl@fit.edu)

Client: Dr. Luginbuhl

Meeting time(s): Bi-weekly Tus

Goal & Motivation: The goal is to design and program a user-friendly application for
visualizing Deterministic Finite Automata (DFA). The primary motivation is to create an
effective teaching and learning aid that allows users to accurately plot DFAs and
animate their execution. This project aims to replace an outdated application with a
more intuitive interface and features requested by the client, such as step-by-step
tracing.

Approach: Key Features:
Intuitive Creation: A GUI editor allowing users to plot DFAs, designate specific states
(initial, final, dead), and track transitions based on grammatically valid strings.
Animation: A visual playback system that shows step-by-step formation and execution
of DFAs, which aids the understanding of logic flow.
Minimization (Complete): The system allows for the minimization of DFAs that have
additional and unnecessary states and transitions.
Improved GUI: A GUI that is seamless and easy to use, such as a toolbox interface that
would allow for hover over for tooltips. As well as shortcuts integrated into the system.

Novel Features/Functionalities:
Multiple symbols on transition: To be able to place multiple symbols on a single
transition and remain readable.
Integrated Documentation: In program documentation toolboxes that allow users to
learn about the software without needing to locate and open external “read me” files.
Interactive Canvas: A drag-and-drop canvas system that integrates with the text-based
backend.

Algorithms & Tools:

mailto:cpintofont2021@my.fit.edu
mailto:vborrelli2022@my.fit.edu
mailto:abastien2021@my.fit.edu
mailto:kmcnear2022@my.fit.edu
mailto:dlugunbuhl@fit.edu

Language: Python is the primary language used for the software logic.
GUI Framework: Using wxGlade and Python for the graphical user interface.
Minimization Algorithm: The distinguishability algorithm is used. This would take
unordered pairs of states, which would mark these pairs where one is accepting and the
other is not, while iteratively making pairs based on transition outputs until no new
marks can be made. The unmarked pairs are combined in the end.

Notes: (1/20/26)
Nice to have: Turn NFA to DFA (can't minimize an NFA, then provide info and optional
ways to convert NFA to DFA) or just hardlock DFA only
Hardcoded demo (pre-record a demo)
Include Lambda only for NFAs (low priority)
Undoable minimization
Depth first to traverse nondeterminism during animation, backtracking would work for
animation (or go through all paths for animation, each has its own color)

Technical Challenges:

1.​ Design: system architecture diagram
○​ Animation Implementation: The team has to work on improving animation.
○​ Minimization Logic: Implementing the minimization logic was a little on the

rougher side. We were able to grasp the concept well enough to
implement it, but we could make it more efficient and guarantee its
correctness.

2.​ Evaluation: how to measure success? Some ideas:
○​ Speed: The software achieves fast enough speeds that occur almost

instantly.
○​ Accuracy: All DFAs have been correct so far, including minimization.
○​ Reliability: The software does achieve the goal.

3.​ Progress Summary:

Module/feature Completion % To do

Interactive canvas for
graphing

100% Improve interactivity

Basic animation in graphing
space

50% Improve animation

Tie text based to visual
version

80% Full implementation

DFA minimization 80% Can be refined

Update “Read Me” file 50% Needs to be updated

4.​ Milestone 4 (Feb 23): itemized tasks:
○​ Implement better animation for visual flow
○​ Check minimization and see if it can be improved
○​ GUI improvements to make the program more visually appealing
○​ Implement lambda if including NFAs

5.​ Milestone 5 (Mar 30): itemized tasks:
○​ Complete tutorial mode
○​ Animation refined
○​ Conduct evaluation and analyze results
○​ Create a poster for Senior Design Showcase

6.​ Milestone 6 (Apr 20): itemized tasks:
○​ Final polish
○​ Test/demo of the entire system
○​ Conduct evaluation and analyze results
○​ Create user/developer manual
○​ Create a demo video

Task Chris Vincent Andrew Keegan

Implement
simple

Bug
Fixer/Code

Bug
Fixer/Code

Co-Lead coder
and

Co-Lead coder
and

animations Contributor
and designer

Contributor
and designer

development
head

development
head

Implement
minimization

Minimization
logic

implementation
and researcher

Bug
Fixer/Code
Contributor

and researcher

Co-Lead coder
and

development
head

Co-Lead coder
and

development
head

Make the GUI
more involved
and “cooler”

Bug
Fixer/Code
Contributor

and researcher

Bug
Fixer/Code
Contributor

and researcher

Co-Lead coder
and

development
head

Co-Lead coder
and

development
head

Include more
transition types

(different
alphabets,
including
lambda)

Logic writer,
DFA logic

consultant, and
bug tester

Logic writer,
DFA logic

consultant, and
bug tester

Co-Lead code
side

implementor

Co-Lead code
side

implementor

 Refine stability
with new

features and
logic

Bug
Fixer/Code
Contributor

and designer

Bug
Fixer/Code
Contributor

and designer

Co-Lead code
side

implementor

Co-Lead code
side

implementor

1.​ Description (at least a few sentences) of each planned task for Milestone 4:
○​ Task 1: Implement animation: We already have simple enough animation

to visually show the flow of the DFA creation and transition, however it
needs to be worked on to make it more impressive.

○​ Task 2: Implement minimization: The implementation of minimization is
roughly implemented but it needs to be further refined. As well as
implementing the tutorial mode.

○​ Task 3: Improve the GUI: We need to make the GUI more visually
appealing while keeping the simplicity of use for the user interface.

○​ Task 4: Include lambda: We need to add lambda transitions to the NFA
logic if we implement NFAs.

○​ Task 5: Refined stability: We need to make sure the program does not
break when new features are added, and keep it stable for robustness.

2.​ Approval from Faculty Advisor
○​ "I have discussed with the team and approve this project plan. I will

evaluate the progress and assign a grade for each of the three
milestones."

○​ Signature: _______________________________ Date: ________

