
Improved
Visualization for
Formal Language

https://kmcnear2022.github.io/

Group Members: Chris Pinto-Font, Vincent Borrelli, Andrew Bastien, Keegan McNear

https://kmcnear2022.github.io/

Who is involved?
Faculty Advisor: Dr. Luginbuhl

Serves the role of academic advisor for the
project; overseeing product needs and design
goals. Providing guidance in the progression of
our project while keeping us on track and
focused on our goals.

Client: Dr. Luginbuhl

The genesis for project was based on the needs
and preferences of Dr. Luginbuhl, specifically his
experiences with other graphing software. His
close involvement with this project will allow us
to quickly address his user needs as he tests our
program regularly.

Technical/Collaboration Tools
Main Technical Tool

Collaborative Software

- Visual Studio Code
- We opted to utilize the application Visual Studio Code as our basis for project

development and code construction due to its ease of use and project team
familiarity. Said code construction and team contributions are linked together
and collected via github.

- Github
- Selected for its ease of use, industry standard status, and overall team

familiarly, Github is the basis for code collaboration and project integrity
- Discord

- We opted to utilize Discord for group correspondence team familiarity and
simplicity of use, as well the team’s preexisting use of the app means keeping up
with team discussion is far easier.

Milestone One Deliverables
Outlining of Main Features

Outlined, expanded, and further refined
functions and features of our DFA
graphing program including
teaching mode
and animations

GUI Mockups

Built/Illustrated concepts for application GUI
as to help plan our program’s graphical output
going forward. They too serve to give our
client a better idea of what said finished
program will likely look like.

UML/Class Diagrams

Illustrated diagrams for
conceptualized classes as to plan
class interactions and object use
within the finished program..

Test Cases

Conceptualized and planned out a list of tests
to ensure app reliability, functionality, a
operational quickness in terms of animation
progression.

Requirements - Examples
Refined Scope requirements:

● Allow users to manually or automatically create DFAs.
● Plot DFAs graphically, designate initial/final/dead states, and track execution for a

given input string.
● Animate the construction and execution of DFAs step-by-step.
● Automatically complete or minimize DFAs using internal algorithms.
● Provide an intuitive, “toolbox”-style GUI with hover-over labeling.
● Offer multiple-symbol transitions (including lambda), readable animations, and

built-in user help.
● Format DFA graphs by aligning nodes to improve readability.
● Allow the user to better understand and learn DFAs through step by step animated

construction and a “teaching mode”

Requirements - Examples, cont.
Performance Requirements:
● The system shall load and render DFA diagrams with ≤ 2

seconds delay for small DFAs (<50 states).
● The animations for construction, reduction, and teaching

mode will occur at a consistent rate for even large DFAs
● All animations will occur and be able to be rendered quickly

through an adherence to algorithmic streamlining to avoid
long calculations slowing them down.

● The application should be able to run on pretty much any
computer as to make its teaching purpose more widely
accessible.

Design Concepts

Simplistic DFA created in GUI Simplistic DFA created in GUI
With animated timeline

Design Concepts

Onboard documentation Animations settings speed

UML Class Diagram Mockup

Testing Plans Excerpt
6.2 Performance Requirements

● [PR-1] Test Case – Large DFA Load
 Input: Load DFA with 100+ states
 Method: Time loading and rendering
 Usual Output: Diagram appears in ≤3 seconds
 Unusual Output: If slower, system displays
“loading” indicator

● [PR-2] Test Case – Animation Speed
 Input: Run DFA execution with adjustable
speed
 Method: Observe FPS and smoothness
 Usual Output: Animation runs smoothly at 30
FPS or more
 Unusual Output: If lag detected, logs
performance metrics

6.1 Functional Requirements

● [FR-1] Test Case – DFA Creation
 Input: User creates a DFA graphically in the editor
 Method: Black-box testing of GUI drawing and backend storage
 Usual Output: States and transitions appear correctly and can be saved
 Unusual Output: Invalid state names trigger error messages

● [FR-2] Test Case – DFA Execution Animation
 Input: Enter string to run on a DFA
 Method: Observe animation step-by-step
 Usual Output: Animation highlights current state and transitions correctly
 Unusual Output: If string invalid, system stops and shows error

● [FR-3] Test Case – State Designation
 Input: Mark states as initial/final/dead
 Method: GUI toggle test
 Usual Output: States visually update (icons/labels)
 Unusual Output: Conflicting designations prevented by warning

Initial Challenges

New Modules Animations Algorithmic Complexity
Project requires

researching new tools
and python libraries to

help render out our
required interactive GUI

and canvas like graphing
process.

Implementing dynamic
and bespoke animations

for DFA traversal,
reduction, and

constructions means
building a rendering

process into the code.

The complexity of
application features for
animation, DFA building,
and things like reduction
means our application

will require complex and
reliable algorithms.

Milestone 1 Progress
Task Completion % Chris Vincent Andrew Keegan To do

Compare and select
Technical Tools

90% 15% 15% 35% 35% Team is willing to add additional libraries and logic tools upon them
making themselves necessary

"hello world" demos 100% 20% 20% 30% 30% None

Resolve Technical
Challenges

40% 10% 10% 10% 10% Learning and refining the animation process for our app
is an ongoing endeavor

Compare and select
Collaboration Tools

100% 25% 25% 25% 25% None

Requirement
Document

100% 15% 55% 15% 15% None

Design Document 100% 10% 25% 35% 30% None

Test Plan 80% 10% 50% 10% 10% Will likely expand scope of testing following more concrete feature
additions

Milestone 2 Plan

Questions?Questions?

Visit Our Site

https://kmcnear2022.github.io/

https://kmcnear2022.github.io/

