Improved
Visualization for
Formal Language

https://kmcnear2022.github.io/

Who is involved?

Faculty Advisor: Dr. Luginbuhl

Serves the role of academic advisor for the
project; overseeing product needs and design
goals. Providing guidance in the progression of
our project while keeping us on track and
focused on our goals.

Client: Dr. Luginbuhl

The genesis for project was based on the needs
and preferences of Dr. Luginbuhl, specifically his
experiences with other graphing software. His
close involvement with this project will a
to quickly address his userneeds
program regularly.

Technical/Collaboration Tools

‘ Main Technical Tool

Visual Studio Code
We opted to utilize the application Visual Studio Code as our basis for project
development and code construction due to its ease of use and project team
familiarity. Said code construction and team contributions are linked together
and collected via github.

Collaborative Software

Github
Selected for its ease of use, industry standard status, and overall team
familiarly, Github is the basis for code collaboration and project integrity
Discord
We opted to utilize Discord for group correspondence team familiarity and
simplicity of use, as well the team’s preexisting use of the app means keeping up

» with team discussion is far easier.

Tl

Milestone One Deliverables

Outlining of Main Features
Qutlined, expanded, and further refined

functions and features of our DFA
graphing program including
teaching mode
and animations

UML/Class Diagrams

lllustrated diagrams for
conceptualized classes as to plan
class interactions and object use
within the finished program..

| Mockups Test Cases

Built/lllustrated concepts for application GUI
as to help plan our program’s graphical output
going forward. They too serve to give our
client a better idea of what said finished
program will likely look like.

Conceptualized and planned out a list of tests
to ensure app reliability, functionality, a
operational quickness in terms of animation
progression.

Requirements - Examples

Refined Scope requirements:

Allow users to manually or automatically create DFAs.
Plot DFAs graphically, designate initial/final/dead states, and track execution for
given input string.

Animate the construction and execution of DFAs step-by-step.

Automatically complete or minimize DFAs using internal algorithms.

Provide an intuitive, “toolbox”-style GUI with hover-over labeling.

Offer multiple-symbol transitions (including lambda), readable animations, and
built-in user help.

Format DFA graphs by aligning nodes to improve readability.

e Allow the user to better understand and learn DFAs through step by step animated
construction and a “teaching mode”

Requirements - Examples, cont.

Performance Requirements:

e The system shall load and render DFA diagrams with < 2
seconds delay for small DFAs (<50 states).

e The animations for construction, reduction, and teaching
mode will occur at a consistent rate for even large DFAs

e All animations will occur and be able to be rendered quickly
through an adherence to algorithmic streamlining to avoid
long calculations slowing them down.

e The application should be able to run on pretty much any
computer as to make its teaching purpose more widely
accessible.

Design Concepts

Properties Pane

Object Toolbox

/ State:
Transition Dead

Timeline

Simplistic DFA created in GUI Simplistic DFA created in GUI
With animated timeline

Design Concepts

Embedded Tutorial Animation Speed
Controls O

0.1 Sec 5 Sed

Start Canvas Tutorial

. Walkthrough Text
Start Minimization Definition Text

Tutorial Theme List

Onboard documentation Animations settings speed

UML Glass Diagram Mockup

DFAEnNngine

States: Array

guiSystem

minimizationSystem

] . displayMinimize()
States: Array Transitions: Array Supplies/Controls
. displayModel()
Transitions: Array

Controls/Calculates for | M0del) displaySettings()
e minimizeTransfer() displayScenarios()
engineTransfer()

Sets

dataStorage up/edits

Database: Table

settings: JSON

accessScenario(name)
saveScenari0()
editSettings()
loadSettings()

6.2 Performance Requirements

[PR-1] Test Case - Large DFA Load

Input: Load DFA with 100+ states

Method: Time loading and rendering

Usual Output: Diagram appears in <3 seconds
Unusual Output: If slower, system displays
“loading” indicator

[PR-2] Test Case — Animation Speed
Input: Run DFA execution with adjustable
speed

Method: Observe FPS and smoothness

Usual Output: Animation runs smoothly at 30
FPS or more

Unusual Output: If lag detected, logs
performance metrics

lesting Plans Excerpt

6.1 Functional Requirements

[FR-1] Test Case — DFA Creation

Input: User creates a DFA graphically in the editor

Method: Black-box testing of GUI drawing and backend storage

Usual Output: States and transitions appear correctly and can be saved
Unusual Output: Invalid state names trigger error messages

[FR-2] Test Case — DFA Execution Animation

Input: Enter string to run on a DFA

Method: Observe animation step-by-step

Usual Output: Animation highlights current state and transitions correctly
Unusual Output: If string invalid, system stops and shows error

[FR-3] Test Case — State Designation

Input: Mark states as initial/final/dead

Method: GUI toggle test

Usual Output: States visually update (icons/labels)

Unusual Output: Gonflicting designations prevented by warning

Initial Challenges

New Modules Animations Algorithmic Complexity
Project requires Implementing dynamic The complexity of
researching new tools and bespoke animations application features for
and python libraries to for DFA traversal, animation, DFA building,

help render out our reduction, and and things like reduction
required interactive GUI constructions means means our application
and canvas like graphing building a rendering will require complex and
process. process into the code. reliable algorithms.

Dl

Milestone 1 Progress

Task Completion % To do

Compare and select 90% Team is willing to add additional libraries and logic tools upon them

Technical Tools making themselves necessary

"hello world" demos None

Resolve Technical Learning and refining the animation process for our app
Challenges is an ongoing endeavor

Compare and select
Collaboration Tools

Requirement
Document

Design Document None

Test Plan Will likely expand scope of testing following more concrete feature
additions

Milestone 2 Plan

Have running
stable version of
the computer
application

Have a working
basic version of
the the DFA
graphing process

Implement a

comprehensive

onboard “read
me” file for
current
application
features

Implement
internal logic to
check DFA
completeness
and string
validity

Bug
Fixing/Advisor
Role

Bug
Fixing/Advisor
Role for DFA
foreknowledge

Bug
Testing/Co-Writ
er

Algorithm
Planning and

DFA knowledge

advisor/bug
tester

Bug
Fixing/Advisor
Role

Bug
Fixing/Advisor
Role for DFA
foreknowledge

Bug
Testing/Lead
writer

Algorithm
Planning and

DFA knowledge

advisor/bug
tester

Co-Lead coder
and development
head

Co-Lead coder
and development
head

Co-Lead coder
and development
head

Co-Lead coder
and development
head

Code Side
implementation

Code Side
implementation

Co-Lead code
side
implementor

Co-Lead code
side
implementor

https://kmcnear2022.github.io/

