Improved
Visualization for

Formal Language:
Milestone 3

https://www.google.com/url?q=https://kmcnear2022.github.io/&sa=D&source=editors&ust=1764798631350759&usg=AOvVaw2K6aGeIYemlR50dqarKADa

Ll

Milestone 3 Goals

We set out improve our visual graphing
environment by adding new requested features
and improving visual cohesion and design.

Milestone Three Deliverables

Animated Traversal System
Created a system for the user to check a
string by traversing the DFA

visually and seeing how
Its compiled.

Onboard “Read Me” file

Expanded “Read Me” file for the
the new features introduced at this

milestone.
Have a rough version of the DFA minimization process Minimization Research
Worked on getting the logic side and visual Met with Dr L to learn more about
implementation of a DFA minimization minimization as a process so that we could
with it and minimization accuracy.

v

0
DFA M\V\ IIW\-"MQV‘

Minimization Research SR e
23
W,9, 1,10\ loo, 1o A= é(L

Group Member Chris Pinto-Font : @w

NO =W—rio

met with our advisor/client Dr L to

Pllit au omprdeed Qs ob shks -
@ DlMalke Svics o lusses Hhrovgla foi5

—p, D [sF ?assf/&w%“ ot flair whre one ele S Gectlhng
(0" j}' éiﬂ(Bacwit
(O"’\\O‘P om din 5()1051%(/4/»4' (')Myl"i’mw"g\\ Oy Oriv ‘4”%\“‘ s
0yt e gl for e —aptett—do—
() i Noe is an 0 €7 ke phd Jleadt g
0)/(5,431‘1, !"\ u)/‘D Yas b ovitd
DAH{/ e fass whe ygo WK no raw 5@&3,3%(
DlNow Coewbne Sl ks wWhe Wdiv Qoies /e uppacied
,12. | U214 = ndstinguisadae
5/6/? =]V\A{Sl—hﬁu.mw
@ :&fsm},',q\,m\au (A(L((’F«no, SMj

discuss how minimization works in
a practical sense, allowing us a

better understanding of it for our

VUOVOEAdEOAVV@VVLGB G

implementation.

Yy

Code Excerpts: Minimization Preparation

2ti repare s

f prepare_minimization(self):
“""Create partition refinement snapshots and enable step-run."""
if not self.states:
messagebox. showinfo("Minimize”, "No states to minimize.")
return

alphabet = self._gather_alphabet()
if not alphabet:

messagebox.showinfo("Minimize”, "No transitions/alphabet to minimize over.’

refuan

all_states = [sid for (_, _, _, sid) in self.states]
accept = set(self.accept_states)
non_accept = set(all_states) - accept

partitions = []

if accept:
partitions.append(set(sorted(accept)))

if non_accept:
partitions.append(set(sorted(non_accept)))

steps = []

steps.append({“part

set(p) for p in partitions], "desc"

Cnanged = True
while changed:
changed
new_parts
for block in partitions:

roupir

sigmap = {}
for q in sorted(block):
sig =[]

for a in alphabet:
tgt = self. delta(q, a)
tgt_block_index

None

if tgt i !
for idx, b in enumerate(partitions):
if tgt in b:
tgt_block_index = idx
break

sig.append(tgt_block_index)

)

"Initial partition (accept / non-accept)“})

Prepares for
Minimization Process.

Encompasses the very
first partition used in the
minimization algorithm,
dividing states into
accepting states and
non-accepting states.

R

Gode Excerpts: Minimization

T
while changed:|
A =

Core of the partition refinement.
For each state in the block, build a signature:
- For each symbol, find which partition the

— transition leads to
- - Example signature: (1, 1, 0) meaning on a —
lgggggzggggzggi;m, o s block 1, on b — block 1, on ¢ — block 0
new_parts.append(set(block))
e ok o States with different signatures cannot be

L) TR e+ - semeemssinion - ooy €@ UIVAlENT — the block must be split.

When a split occurs:

- New blocks replace the old block

- A minimization step snapshot is recorded and
shown in the GUI

This implements the formal refinement rule:
Two states are equivalent only if all transitions

“ on all symbols go to the same partitions.

view.")

Code Excerpts: Minimization Animation

steps = []

steps.append({"

partitions”: [set(p) for p in partitions], "desc™: “"Initial partition (accept / non-accept)"})

I The program stores each
e reflnement step in a list:

new_parts = []
for block in partitions:

e SN - Every iteration partition
25 : Er]1 alphabet: Conﬁguration

tgt = self._delta(q, a)

b - A human-readable

for idx, b in enumerate(partitions):

if tgt in b: . .
b bt e = e description
break
ig. d block_ind H H
b s - Used later for animation
sigmap.setdefault(sig, set()).add(q) . .
A5 dealc i) = and step navigation
new_parts.append(set(block))
else:

record split

. The GUI then displays all steps
changed = True

steps.append({"partitions”: [set(p) for p in partitions], A ”
“desc”: f"Split block {sorted(list(block))} into " + "; ".join(str(sorted(list(s))) for s in sigmap.values())}) aut0| I IatICa yo

partitianc - new_pante

steps.append({“partitions": [set(p) for p in partitions], "desc": "Final partition (no further splits)"})

self.min_steps = steps
self.min_step_index = -1
self.set_status("Minimization prepared. Open Min Steps to view.")

1 a

self.open_minimization_window()

Code Excerpts: Building new DFA

Maps the original states to its
minimized DFA state

def apply _minimized_dfa(self):
if not self.min_steps:

‘ messagebox.showinfo("Minimize™, “No prepared minimization steps.”)
1 n

final = self.min_steps[-1]["partitions”]

map old state -> block index

state_to_block = {}

for idx, block in enumerate(final):
for s in block:

state_to_block[s] = idx

new positions: centroid of members
new_pos = {}
for idx, block in enumerate(final):
xs = []
yss=ij
for s in block:
c = self.get state center(s)

FEcE
xs.append(rfaly
ys.append (« # new alphabet and transition map
if xs: alphabet = self._gather_alphabet()

new_map = {}
. for old_state in list(state_to_block.keys()):
else: frm_blk = state_to_block[old_state]
new_pos[idx] = for a in alphabet:
tgt = self._delta(old_state, a)
if tgt is not None:
to_blk = state_to_block.get(tgt)
if to_blk is not None:
deterministic: last write
new_map.setdefault((frm_blk, a), to_blk)

new_pos[idx] =

new alphabet and tra

3

ns (should be consistent)

combine symbols into edges (frm_blk,to blk) -> set(symbols)

combined = {}

for (frm, sym), to in new map.items():
combined.setdefault((frm, to), set()).add(sym)

L

Video Demonstration- Animated Traversal

Several State DFA
traversed via string
checking, lets user do
it instantly or step
through it, both with
controllable
animation speeds.

https://www.google.com/url?q=https://docs.google.com/file/d/13zHsxLlUAffyiGAy8pgKGLl08gw8aH6K/preview&sa=D&source=editors&ust=1764798633916499&usg=AOvVaw3Mbz8muNn_2974Nnu6iTfX

Video Demonstration- Rough Minimization

DFA Graphing Program - Added state q0'

Uses Researched Implementation
of minimization process to
minimize DFA

ste| Add Transition | SetStart| SetAccept| Undo| Redo| Clesr| CheckString| Prepare Minimize

(will be expanded and refined with
more animations and tested use
cases)

DFA Minimization

e So these two DFAs are equivalent:

https://www.google.com/url?q=https://docs.google.com/file/d/1MexXdHBOhwTxUUP4uXV_kfkE9JtknY2Q/preview&sa=D&source=editors&ust=1764798634038330&usg=AOvVaw1K2lzaR120NeERVlvTATb8

Milestone 3 Progress

Task Completion % Chris Vincent Andrew Keegan To do
Implement 100% 25% 25% 25% 25% N/A
Interactive canvas
space for graphing
Implement basic 100% 20% 35% 20% 25% Add more as
animations in features arrive
graphing space
Tie text based 70% 20% 20% 20% 40% Continue to
program version im prove
to visual version connection
Implement basic 100% 20% 30% 20% 30% Improve
DFA minimization accuracy and
functionality user
experience.
Update Readme 100% 40% 40% 10% 10% Continue to
file to include new expand
feature

information

Milestone 4 Plan

Chris

Task

Vincent

Andrew

Keegan

Refine and expand

Bug Fixer/Code

Bug Fixer/Code

Co-Lead coder and

Co-Lead coder and

minimization Contributor and designer | Contributor and designer development head development head
Develop graph builder Bug Fixer/Code Bug Fixer/Code Co-Lead coder and Co-Lead coder and
based on submitted Contributor and Contributor and development head development head
string researcher researcher

Start developing “teacher Bug Fixer/Code Bug Fixer/Code Co-Lead coder and Co-Lead coder and
mode” for user Contributor and Contributor and development head development head
interactive DFA building researcher researcher

Heavily bug test and Bug tester/code refining | Bug tester/code refining | Problem Identifier/Code | Problem Identifier/Code

ensure standards of Refiner Refiner

current and Milestone 4

features

Updated “Read Me” File Co-Writer Co-Writer Code Side Code Side
implementation implementation

https://www.google.com/url?q=https://kmcnear2022.github.io/&sa=D&source=editors&ust=1764798634197900&usg=AOvVaw2lQjRc58xd0G0rs1mkdV_G

