
Senior Design Design Document

 Improved Visualization for Formal Languages

Group Members:

 Chris Pinto-Font (cpintofont2021@my.fit.edu)

Vincent Borrelli (vborrelli2022@my.fit.edu)

Andrew Bastien (abastien2021@my.fit.edu)

Keegan McNear (kmcnear2022@my.fit.edu)

Faculty Advisor:

Dr. Luginbuhl (dluginbuhl@fit.edu)

Client:

Dr. Luginbuhl

Florida Institute of Technology

September 4, 2025

mailto:cpintofont2021@my.fit.edu
mailto:vborrelli2022@my.fit.edu
mailto:abastien2021@my.fit.edu
mailto:kmcnear2022@my.fit.edu
mailto:dlugunbuhl@fit.edu

Table of Contents
1.​ Introduction​

  1.1 Purpose​
  1.2 Scope​
  1.3 References

2.​ System Architecture​
  2.1 High-Level Architecture Diagram​
  2.2 Component Overview

3.​ Detailed Design​
  3.1 DFA Editor Modules​
  3.2 Backend/Computation Services​
  3.3 Data Model​
  3.4 Communication & Security​
  3.5 UML Class Diagram (Mockup)

4.​ Graphical User Interface (GUI)​
  4.1 Mock-ups of Key Screens​
  4.2 Navigation Flow

5.​ Algorithms, Pseudocode & Educational Features​

6.​ Conclusion​

1. Introduction

1.1 Purpose

This document presents the system design for the Improved Visualization for Formal
Languages application. It ensures the design satisfies requirements defined in the
Requirements Document. It outlines architecture, modules, data flows, GUI layout, algorithms,
and educational animations necessary to provide a modern, user-friendly DFA visualization and
learning tool.

1.2 Scope

The application will:

●​ Allow intuitive creation of DFAs through a graphical editor.​

●​ Plot states, designate initial/final/dead states, and define transitions.​

●​ Animate DFA execution on user-entered strings.​

●​ Automatically minimize and complete DFAs using well-known algorithms.​

●​ Provide an improved GUI toolbox inspired by JFLAP but easier to use.​

●​ Include in-program documentation and tooltips so users learn without leaving the
application.​

1.3 References

●​ IEEE Standard for Information Technology – Software Design Descriptions.​

●​ JFLAP open-source project (Java) as an inspiration for GUI and functionality.

2. System Architecture

2.1 High-Level Architecture Diagram

2.2 Component Overview

●​ DFA Editor (Front-end): Python-based GUI where users draw states and

transitions, input strings, and run animations.

●​ Computation/Algorithm Engine: Executes state transitions, minimization, and

completeness algorithms; returns results to GUI.

●​ Documentation/Help System: In-program guides and tooltips explaining DFA

concepts and program features.

●​ Data Storage: JSON or SQLite storage for saving/loading DFA projects.

●​ External Libraries: Python GUI library (Qt or Tkinter) and optional Cython

modules for performance.

3. Detailed Design

3.1 DFA Editor Modules
●​ State/Transition Module: Create, edit, label, and delete states and transitions. Supports

multiple symbols per arc.
●​ Execution Module: Simulate DFA on one or multiple input strings and animate traversal.
●​ Minimization/Completion Module: Implement algorithms to reduce states and fill missing

transitions.
●​ Documentation Module: Display contextual help, tutorials, and examples in-app.​

3.2 Backend/Computation Services
●​ Simulation Service: Given a DFA and input, step through transitions and produce

acceptance/rejection.
●​ Minimization Service: Apply standard minimization algorithm (partition refinement).
●​ Completion Service: Detect incomplete DFAs and add dead states/needed transitions.​

3.3 Data Storage Model
●​ Model table with past scenarios labeled by complexity/size.
●​ Settings JSON.
●​ Both accessed by the data permanence handler class.

3.4 Communication & Security
●​ Local application; no network traffic for core features.​

●​ All file saves/loads are sandboxed to user’s environment.​

3.5 UML Class Diagram (Mockup)

4. Graphical User Interface (GUI)

4.1 Mock-ups of Key Screens
●​ Main Editor Screen: Canvas with toolbox for states, transitions, and selection; property

pane for editing.

​

●​ Execution Screen: Highlight current state as input string is processed step by step.

​

●​ Minimized DFA View: Side-by-side comparison of original and minimized DFA.

​

●​ Help/Documentation Panel: Embedded tutorials, definitions, and walkthroughs.​

●​ Settings Panel: Choose theme, animation speed, and export options.

4.2 Navigation Flow
Left-hand toolbox → Canvas → Simulation controls → Results view.​
 Tabs or side menu to switch between Editor, Simulation, Minimized View, and Help.

5. Algorithms, Pseudocode & Educational Features
Simulation (simplified pseudocode):
function runDFA(dfa, inputString):
 currentState = dfa.initialState
 for symbol in inputString:
 highlight(currentState)
 wait(animationDelay)
 currentState = dfa.transition(currentState, symbol)
 highlight(currentState)
 return currentState in dfa.finalStates

Minimization (simplified pseudocode):
function minimizeDFA(dfa):
 partition = {finalStates, nonFinalStates}
 repeat:
 newPartition = refine(partition, dfa)
 until newPartition == partition

 return buildDFA(newPartition)

Educational Component:

●​ Step-by-step animations show how states are partitioned during minimization.​

●​ Animated tracing highlights transitions on the input string.​

●​ Hovering over a tool shows a pop-up explaining DFA concepts (e.g., “dead state,” “initial
state”).​

●​ Optional “learning mode” automatically pauses after each step with a textual explanation.

6. Conclusion

This design integrates modular components to meet functional, performance, and usability

requirements for a modern DFA visualizer. The GUI provides a student-friendly toolbox

with embedded tutorials and animations. By adhering to IEEE standards and including a

built-in educational mode, this design ensures reliability, scalability, maintainability, and

effectiveness as a teaching and learning aid for formal languages.

	Senior Design Design Document
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References

	
	
	2. System Architecture
	2.1 High-Level Architecture Diagram
	2.2 Component Overview

	3. Detailed Design
	3.1 DFA Editor Modules
	3.2 Backend/Computation Services
	3.3 Data Storage Model
	3.4 Communication & Security
	3.5 UML Class Diagram (Mockup)

	4. Graphical User Interface (GUI)
	4.1 Mock-ups of Key Screens
	4.2 Navigation Flow

	5. Algorithms, Pseudocode & Educational Features
	6. Conclusion

